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Abstract

The Fock space construction for Hilbert modules gives rise to an important class of C∗-algebras, the so
called Cuntz-Pimsner Algebras, which includes some well known examples of C∗-algebras like the Cuntz
algebras and crossed products by Z. Back in 2012, Chris Phillips introduced an analog of the Cuntz
algebras on Lp spaces and the theory of crossed products of Lp operator algebras. Recently, I’ve been
working on a Fock space type construction that I think will produce a class of Lp operator algebras that
hopefully will contain the Lp Cuntz algebras and the Lp version of crossed products by Z.

I will start this talk with an explicit construction of the usual Cuntz algebras. Then, I will explain
how to construct the Toeplitz algebra TE and the Cuntz-Pimsner algebra OE for a Hilbert A-module
E. I will prove that the Cuntz algebras are a special case of this construction. Time permitting, I will
say something about how a version of this could work in the Lp-setting, which tools I’ll need to use and
explain what are the most likely problems I will encounter down the road.

1 The Cuntz Algebras Od and Ed

Let d ∈ Z≥2 and H an infinite dimensional separable Hilbert space. Then, there are elements s1, s2, . . . , sd ∈
L(H) such that

s∗jsj = 1 and
d∑
j=1

sjs
∗
j = 1 (1)

Let’s show this for d = 2. Let {ξ1, ξ2, . . .} be an orthonormal basis for H. Define sj : H → H for j = 1, 2 by

s1(ξn) = ξ2n and s2(ξn) = ξ2n−1 n ≥ 1

One quickly checks that

s∗1(ξn) =

{
ξn/2 if n is even

0 if n is odd
and s∗2(ξn) =

{
ξ(n+1)/2 if n is odd

0 if n is even

To check that the relations 1 are satisfied, we look first at s∗jsj for j = 1, 2:

s1 s∗1
ξ1 7→ ξ2 7→ ξ1

ξ2 7→ ξ4 7→ ξ2

ξ3 7→ ξ6 7→ ξ3

ξ4 7→ ξ8 7→ ξ4
...

...
...

...
...

and

s2 s∗2
ξ1 7→ ξ1 7→ ξ1

ξ2 7→ ξ3 7→ ξ2

ξ3 7→ ξ5 7→ ξ3

ξ4 7→ ξ7 7→ ξ4
...

...
...

...
...
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so indeed s∗jsj = 1. We now look at sjs
∗
j for j = 1, 2:

s∗1 s1

ξ1 7→ 0 7→ 0
ξ2 7→ ξ1 7→ ξ2

ξ3 7→ 0 7→ 0
ξ4 7→ ξ2 7→ ξ4
...

...
...

...
...

and

s∗2 s2

ξ1 7→ ξ1 7→ ξ1

ξ2 7→ 0 7→ 0
ξ3 7→ ξ2 7→ ξ3

ξ4 7→ 0 7→ 0
...

...
...

...
...

from were we clearly see that s1s
∗
1 + s2s

∗
2 = 1.

Definition 1.1. We define Od, the Cuntz algebra of order d ∈ Z≥2, as the sub-C∗ algebra in L(H) generated
by s1, . . . , sn.

The construction of Od is independent of the Hilbert space H and the choice of isometries sj as long as the
relations 1 are satisfied.

The algebra Od is a simple, unital C∗-algebra and has the following universal property: If A is a unital
C∗-algebra containing elements a1, . . . , ad such that

a∗jaj = 1 and
d∑
j=1

aja
∗
j = 1,

then there is a unique ∗-homomorphism ϕ : Od → A such that ϕ(sj) = aj .

Definition 1.2. For d ∈ Z≥2, look at the generating isometries s1, . . . , sd+1 ∈ Od+1 and let Ed be the
sub-C∗ algebra in L(H) generated by s1, . . . , sd. That is, Ed is the universal unital C∗-algebra generated by
d isometries, whose orthogonal ranges do not add up to 1.

The Cuntz algebra Od has elements satisfying the relations of Ed, so by universality there is a surjective
map Ed → Os. The kernel of this map is the ideal in Ed generated by sd+1s

∗
d+1 = 1 −

∑d sjs
∗
j , which we

denote by Jd. Then Ed/Jd ∼= Od.

2 A brief review of Hilbert Modules

Definition 2.1. Let A be a C∗-algebra and E a complex vector space which is also a right A-module. An
A-valued right inner product on E is a map

E × E → A
(ξ, η) 7→ 〈ξ, η〉A

such that for any ξ, η, η1, η2 ∈ E, a ∈ A and α ∈ C we have

1. 〈ξ, η1 + αη2〉A = 〈ξ, η1〉A + α〈ξ, η2〉A.

2. 〈ξ, ηa〉A = 〈ξ, η〉Aa.

3. 〈ξ, η〉∗A = 〈η, ξ〉A.

4. 〈ξ, ξ〉A ≥ 0 in A.

5. 〈ξ, ξ〉A = 0 =⇒ ξ = 0.
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Definition 2.2. Let A be a C∗-algebra. A Hilbert A-module is a complex vector space E which is a right
A-module with an A-valued right inner product and so that E is complete with the norm ‖ξ‖ := ‖〈ξ, ξ〉A‖1/2.
We say that E is full if the two sided ideal span〈E,E〉A := span{〈ξ, η〉A : ξ, η ∈ E} is dense in A.

Example 2.3. Let H be a Hilbert space with the physicists convention that the inner product is linear in
the second variable. Then, H is clearly a full Hilbert C-module.

Example 2.4. Any C∗-algebra A is clearly a full Hilbert A-module with inner product given by (a, b) 7→ a∗b.
More generally, An is also a full Hilbert A-module with the obvious “euclidean” inner product.

Example 2.5. The set of continuous sections of a vector bundle over a compact Hausdorff space X equipped
with a Riemannian metric g is a Hilbert C(X)-module.

Example 2.6. If (Eλ)λ∈Λ is an arbitrary family of Hilbert A-modules, we can form their direct sum

⊕
λ∈Λ

Eλ :=

{
ξ = (ξλ)λ∈Λ ∈

∏
λ∈Λ

Eλ :
∑
λ∈Λ

〈ξλ, ξλ〉 converges in A

}

which is a right A-module with coordinate-wise action and it becomes a Hilbert A-module when equipped
with the well defined A-valued inner product

〈ξ, η〉 :=
∑
λ∈Λ

〈ξλ, ηλ〉

A main difference between Hilbert modules and Hilbert spaces is that not every bounded linear map between
Hilbert A-modules has an adjoint. We will only be interested in those maps that do have an adjoint.

Definition 2.7. Let E and F be a Hilbert A-modules. A map t : E → F is said to be adjointable if there
is a map t∗ : F → E such that for any ξ ∈ E, and η ∈ F

〈t(ξ), η〉 = 〈ξ, t∗(η)〉

The space of adjointable maps from E to F is denoted by LA(E,F ) and LA(E) := LA(E,E).

It’s almost immediate that adjointable maps between Hilbert modules are linear and bounded. A standard
proof shows that LA(E) is a C∗-algebra when equipped with the operator norm. We will have special interest
for a particular case of andjointable maps, those of “rank 1”:

Definition 2.8. Let E and F be a Hilbert A-modules. For ξ ∈ E and η ∈ F , we define a map θξ,η : F → E
by

θξ,η(ζ) := ξ〈η, ζ〉A

One easily checks that θξ,η ∈ LA(E,F ), that (θξ,η)
∗ = θη,ξ ∈ LA(F,E) and that ‖θξ,η‖ ≤ ‖ξ‖‖η‖. This

gives an analogous of the class of rank-one operators on Hilbert spaces. So, we define an analogous of the
compact operators by letting

KA(E,F ) := span{θξ,η : ξ ∈ E, η ∈ F}

It’s also not hard to verify that KA(E) := KA(E,E) is a closed two sided ideal in LA(E), whence K(E) is
also a C∗-algebra.
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3 The Fock space construction

Definition 3.1. Let A be a C∗-algebra. A C∗-correspondence over A is a pair (E,ϕ) where E is a Hilbert
right A-module and a ϕ : A→ LA(E) is a ∗-homomorphism.

Remark 3.2. Even though it’s not strictly necessary, from now on we will assume that the map ϕ of a
C∗-correspondence over A is injective and therefore isometric. This is done for simplicity.

Given (E,ϕE) and (F,ϕF ) two C∗-correspondence over A, we use the inner tensor product construction to
produce (E⊗ϕF F, ϕ̃E), a new C∗-correspondence over A. More precisely, E⊗ϕF F is a Hilbert module such
that the middle action is glued:

ξa⊗ η − ξ ⊗ ϕF (a)η = 0,

it’s an A-module with right action satisfying

(ξ ⊗ η)a = ξ ⊗ (ηa),

it has an A-valued right inner product such that

〈ξ1 ⊗ η1, ξ1 ⊗ η2〉 = 〈η1, ϕF (〈ξ1, ξ2〉)η2〉.

In fact, E⊗ϕF F is the completion of the algebraic tensor product E�AF with respect to the norm induced
by the above inner product. Finally, ϕ̃E : A→ LA(E ⊗ϕF F ) is defined on elementary tensors by

ϕ̃E(a)(ξ ⊗ η) = (ϕE(a)(ξ))⊗ η

From now on we’ll do an abuse of notation and drop the ˜ on top of ϕF . In fact, any adjointable map acting
on a Hilbert A module, also acts on E ⊗− by only acting on the E portion.

Definition 3.3. Given (E,ϕ) a C∗-correspondence over A, the Fock space of E is the Hilbert A-module
given by

F(E) :=
⊕
n≥0

E⊗n,

where E⊗0 := A and E⊗n := E ⊗ϕ . . .⊗ϕ E︸ ︷︷ ︸
n times

.

An arbitrary element of F(E) is a tuple (κn)n≥0 where each κn is an element of the nth degree tensor
product of E.

For a fixed ξ ∈ E and any n ∈ Z≥1 we have a creation operator cξ : E⊗n → E⊗(n+1) given by

cξ(η) := ξ ⊗ η, ∀ η ∈ E⊗n

If n = 0 we set cξ : A→ E
cξ(a) := ξa, ∀ ∈ A

Each cξ is an adjointable map where, if n ∈ Z≥1, c∗ξ : E⊗(n+1) →: E⊗n is an annihilation operator, satisfying

c∗ξ(ζ ⊗ η) = ϕ(〈ξ, ζ〉)η, ∀ ζ ∈ E, η ∈ E⊗n

and c∗ξ : E → A is simply
c∗ξ(ζ) = 〈ξ, ζ〉, ∀ ζ ∈ E,

Notice that cξ increases the degree by one, whereas c∗ξ decreases the degree by one. Moreover, let ξ, ζ ∈ E
and n ≥ 0. We have the following important property for the map c∗ξcζ : E⊗n → E⊗n:

c∗ξcζ = ϕ(〈ξ, ζ〉) ∈ LA(E⊗n),
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and that also for the map cξc
∗
ζ : E⊗(n+1) → E⊗(n+1), which satisfies

cξc
∗
ζ = θξ,ζ ∈ LA(E⊗(n+1)).

We abuse notation and consider the elements cξ as elements of LA(F(E)) acting coordinate-wise:

cξ
(
(κn
)
n≥0

) :=
(
cξ(κn)

)
n≥0

and
c∗ξ
(
(κn)n≥0

)
:=
(
c∗ξ(κn)

)
n≥1

4 The Toeplitz algebra TE and TCd
∼= Ed

Definition 4.1. Let (E,ϕ) be a C∗-correspondence over A. We define TE , the Toeplitz algebra of E, as
the C∗-subalgebra in LA(F(E)) generated by the creation operators {cξ : ξ ∈ E}.

Remark 4.2. Notice that the definition of TE does not change if instead of A we use span〈E,E〉 ⊆ A. Thus,
we might as well assume that E is a full Hilbert A-module. We then can identify A with it’s image in TE
given by a 7→ ϕ(a). Indeed, it suffices to check that ϕ(a) ∈ TE for any a ∈ A. By the fullness assumpltion,
it suffices to check it when a = 〈ξ, ζ〉, but we already know that ϕ(〈ξ, ζ〉) ∈ c∗ξcζ ∈ TE .

The Toeplitz algebra TE has the following universal property. Suppose B is another C∗-algebra and that
there is a ∗-homomoprhism π : A→ B, a linear map t : E → B such that

1. t(ξ)∗t(ζ) = π(〈ξ, ζ〉) for ξ, ζ ∈ E,

2. π(a)t(ξ) = t(ϕ(a)ξ)

Then there π has is a unique extension π̂ : TE → B that sends cξ to t(ξ).

Theorem 4.3. Let d ∈ Z≥2 and regard Cd as a Hilbert C-module. Let ϕ : C→ LC(Cd) by given by

ϕ(z)(ζ1, . . . , ζd) := (zζ1, . . . , zζd)

Then (Cd, ϕ) is a C∗ correspondence and TCd
∼= Ed.

Proof. For simplicity we only show this when d = 2 as the proof is essentially the same for any other d.
We start by showing that the TC2 has elements satisfying the relations of E2. Indeed, consider v1 := c(1,0)

and v2 := c(0,1). We have to check that v∗1v1 = v∗2v2 = 1 in LC(F(C2)). We only do v∗1v1 = 1, the other one
being analogous. We have to check v∗1v1 acts as the identity on each (C2)⊗n. Well, for n = 0 take z ∈ C

(v∗1v1)(z) = c∗(1,0)(z, 0) = 〈(1, 0), (z, 0)〉 = z.

For n ≥ 1,
(v∗1v1) = c∗(1,0)c(1,0) = ϕ(〈(1, 0), (1, 0)〉) = ϕ(1) = id

By universality there is a unique ∗-homomorphism ψ : E2 → TC2 , which sends the sj to vj . Notice that ψ is
surjective because v1, v2 generate TC2 . To show that it’s injective, we use the universal property of TC2 we
produce a map TC2 → E2 which is a left inverse to ψ. Let π : C→ E2 be given by π(z) := z1 and t : C2 → E2

be given by
t(ζ1, ζ2) = ζ1s1 + ζ2s2

It’s obvious that π is a ∗-homomorphism and that t is a linear map. Moreover, using that s∗jsj = 1 we get

t(ζ1, ζ2)∗t(η1, η2) = (ζ1η1 + ζ2η2)1 = π(〈(ζ1, ζ2), (η1, η2)〉)

5



Finally,
π(z)t(ζ1, ζ2) = z1(ζ1s1 + ζ2s2) = zζ1s1 + zζ2s2 = t(ϕ(z)(ζ1, ζ2))

Hence, universality gives the ∗-homomorphism π̂ : TC2 → E2 sending cξ to t(ξ). Since t(1, 0) = s1 and
t(0, 1) = s2, it follows π̂ is indeed a left inverse for ψ. �

Remark 4.4. Notice that TC2 6= O2. Indeed, if v1 := c(1,0) and v2 := c(0,1) are asin the proof, then
v1v
∗
1 + v2v

∗
2 does not quite act as the identity on all degrees of F(C2). In fact, it only fails to do so at degree

0, because the adjoint kills everything at n = 0. Indeed,

(v1v
∗
1 + v2v

∗
2)
(
(κn)n≥0

)
=
(
(κn)n≥1

)
Thus, 1− (v1v

∗
1 + v2v

∗
2) is in fact a rank one operator who extracts the 0 coefficient, that is

1− (v1v
∗
1 + v2v

∗
2) = θ(1,0,0,...),(1,0,0,...)

This problem will no longer occur when we define the Cuntz-Pimsner algebra OC2 , as we will be taking a
quotient by a set that contains 1− (v1v

∗
1 + v2v

∗
2).

A more general version of Theorem 4.3 above, with essentially the same proof, is the following

Theorem 4.5. Let d ∈ Z≥2,A a C∗-algebra and regard Ad as a Hilbert A-module. Let ϕ : A → LA(Ad) by
given by

ϕ(a)(a1, . . . , ad) := (aa1, . . . , aad)

Then (Ad, ϕ) is a C∗ correspondence and TAd
∼= A⊗ Ed.

5 The Cuntz-Pimsner algebra OE and OCd
∼= Od

Definition 5.1. For a C∗ correspondence (E,ϕ) over A, we define the ideal JE := ϕ−1(KA(E)).

Lemma 5.2. Let (E,ϕ) be a C∗ correspondence over A. Then F(E)JE is a Hilbert JE-module and

KJE (F(E)JE) = span{θκa,τ : κ, τ ∈ F(E), a ∈ JE} E LA(F(E))

We will now consider the quotient C∗-algebraQA(E) := LA(F(E))/KJE (F(E)JE) together with the quotient
map q : LA(F(E))→ QA(E).

Definition 5.3. Let (E,ϕ) be a C∗-correspondence over A. We define OE , the Cuntz-Pimsner algebra of
E, as the C∗-subalgebra in QA(E) generated by the image of the creation operators {q(cξ) : ξ ∈ E}.

Remark 5.4. Just as before, we assume that E is a full Hilbert A-module and identify A as a subset of
OE via a 7→ q(ϕ(a)).

The Cuntz-Pimsner algebra OE has the following universal property. Suppose B is another C∗-algebra and
that there is a ∗-homomoprhism π : A→ B, a linear map t : E → B such that

1. t(ξ)∗t(ζ) = π(〈ξ, ζ〉) for ξ, ζ ∈ E,

2. π(a)t(ξ) = t(ϕ(a)ξ)

Further, consider the ∗-homomorphism Θt : KA(E) → B satisfying Θt(θξ,ζ) = t(ξ)t(ζ)∗ for ξ, ζ ∈ E, and
suppose also that
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3. π(a) = Θt(ϕ(a)) for a ∈ JE

Then there π has is a unique extension π̂ : OE → B that sends q(cξ) to t(ξ).

Theorem 5.5. Let d ∈ Z≥2 and regard Cd as a Hilbert C-module. Let ϕ : C→ LC(Cd) by given by

ϕ(z)(ζ1, . . . , ζd) := (zζ1, . . . , zζd)

Then (Cd, ϕ) is a C∗ correspondence and OCd
∼= Od.

Proof. Again we only show this when d = 2. We will show that OC2 fits the universal property for O2.
Well, if v1 := q(c(1,0)) and v2 := q(c(0,1)). Using our computations from Theorem 4.3 we have

v∗1v1 = v∗2v2 = q(idLA(F(C2))) = 1

Also, notice that θ(1,0,0,...),(1,0,0,...) ∈ KJE (F(E)JE) because in this case LC(C2) = KC(C2) and therefore
JC2 = C. Thus, following the computations from Remark 4.4 we have

v1v
∗
1 + v2v

∗
2 = q(id− θ(1,0,0,...),(1,0,0,...)) = q(id) = 1

Hence, universality gives a surjective ∗-homomorphism O2 → OC2 sending sj to vj , for j = 1, 2. Since O2 is
simple,such homomorphism has to be injective and we are done. �

A more general version of Theorem 5.5 above, with essentially the same proof, is the following

Theorem 5.6. Let d ∈ Z≥2,A a C∗-algebra and regard Ad as a Hilbert A-module. Let ϕ : A → LA(Ad) by
given by

ϕ(a)(a1, . . . , ad) := (aa1, . . . , aad)

Then (Ad, ϕ) is a C∗ correspondence and OAd
∼= A⊗Od.

6 A potential Lp version

If (X,µ) is a measure space and p ∈ [1,∞), an Lp-operator algebra A is a Banach algebra that’s isometrically
isomorphic to a norm closed subalgebra of L(Lp(X,µ)).

Definition 6.1. Let d ≥ 2 be an integer. We define the Leavitt algebra Ld to be the universal complex
unital algebra generated by elements s1, s2, . . . , sd, t1, t2, . . . , td satisfying

tjsk = δj,k and
d∑
j=1

sjtj = 1

There is a well defined norm on Ld that comes from a particular kind of algebraic representations of Ld on
σ-finite Lp spaces. The completion of Ld with respect to this norm is the Lp-Cuntz algebra Opd.
I have been working on a Fock space-type construction for an Lp operator algebra A that yields a class of
Lp-operator algebras that contains the Lp-Cuntz algebras. Looks like looking at the notion of Rigged Hilbert
modules introduced by D.P. Blecher gives a reasonable starting point. One needs to give an operator space
type definition for Lp spaces. Some issues that might appear along the road will require to fix a representation
π : A→ L(Lp(X,µ)), choose a particular tensor product and a particular type of completion.
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