Cuntz-Pimsner Algebras and a potential L^{p} version.

Alonso Delfín
University of Oregon.

October 29, 2020

Abstract

The Fock space construction for Hilbert modules gives rise to an important class of C*-algebras, the so called Cuntz-Pimsner Algebras, which includes some well known examples of C^{*}-algebras like the Cuntz algebras and crossed products by \mathbb{Z}. Back in 2012, Chris Phillips introduced an analog of the Cuntz algebras on L^{p} spaces and the theory of crossed products of L^{p} operator algebras. Recently, I've been working on a Fock space type construction that I think will produce a class of L^{p} operator algebras that hopefully will contain the L^{p} Cuntz algebras and the L^{p} version of crossed products by \mathbb{Z}.

I will start this talk with an explicit construction of the usual Cuntz algebras. Then, I will explain how to construct the Toeplitz algebra \mathcal{T}_{E} and the Cuntz-Pimsner algebra \mathcal{O}_{E} for a Hilbert A-module E. I will prove that the Cuntz algebras are a special case of this construction. Time permitting, I will say something about how a version of this could work in the L^{p}-setting, which tools I'll need to use and explain what are the most likely problems I will encounter down the road.

1 The Cuntz Algebras \mathcal{O}_{d} and \mathcal{E}_{d}

Let $d \in \mathbb{Z}_{\geq 2}$ and \mathcal{H} an infinite dimensional separable Hilbert space. Then, there are elements $s_{1}, s_{2}, \ldots, s_{d} \in$ $\mathcal{L}(\mathcal{H})$ such that

$$
\begin{equation*}
s_{j}^{*} s_{j}=1 \quad \text { and } \quad \sum_{j=1}^{d} s_{j} s_{j}^{*}=1 \tag{1}
\end{equation*}
$$

Let's show this for $d=2$. Let $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$ be an orthonormal basis for \mathcal{H}. Define $s_{j}: \mathcal{H} \rightarrow \mathcal{H}$ for $j=1,2$ by

$$
s_{1}\left(\xi_{n}\right)=\xi_{2 n} \quad \text { and } \quad s_{2}\left(\xi_{n}\right)=\xi_{2 n-1} \quad n \geq 1
$$

One quickly checks that

$$
s_{1}^{*}\left(\xi_{n}\right)=\left\{\begin{array}{ll}
\xi_{n / 2} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }
\end{array} \quad \text { and } \quad s_{2}^{*}\left(\xi_{n}\right)= \begin{cases}\xi_{(n+1) / 2} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases}\right.
$$

To check that the relations 1 are satisfied, we look first at $s_{j}^{*} s_{j}$ for $j=1,2$:

	s_{1}		s_{1}^{*}			s_{2}		s_{2}^{*}		
ξ_{1}	\mapsto	ξ_{2}	\mapsto	ξ_{1}	ξ_{1}	\mapsto	ξ_{1}	\mapsto	ξ_{1}	
ξ_{2}	\mapsto	ξ_{4}	\mapsto	ξ_{2}		ξ_{2}	\mapsto	ξ_{3}	\mapsto	ξ_{2}
ξ_{3}	\mapsto	ξ_{6}	\mapsto	ξ_{3}	and	ξ_{3}	\mapsto	ξ_{5}	\mapsto	ξ_{3}
ξ_{4}	\mapsto	ξ_{8}	\mapsto	ξ_{4}	ξ_{4}	\mapsto	ξ_{7}	\mapsto	ξ_{4}	
\vdots										

so indeed $s_{j}^{*} s_{j}=1$. We now look at $s_{j} s_{j}^{*}$ for $j=1,2$:

$$
\begin{array}{cccccccccc}
& s_{1}^{*} & & s_{1} & & & s_{2}^{*} & & s_{2} & \\
\xi_{1} & \mapsto & 0 & \mapsto & 0 & \xi_{1} & \mapsto & \xi_{1} & \mapsto & \xi_{1} \\
\xi_{2} & \mapsto & \xi_{1} & \mapsto & \xi_{2} & & \xi_{2} & \mapsto & 0 & \mapsto
\end{array} 0
$$

from were we clearly see that $s_{1} s_{1}^{*}+s_{2} s_{2}^{*}=1$.
Definition 1.1. We define \mathcal{O}_{d}, the Cuntz algebra of order $d \in \mathbb{Z}_{\geq 2}$, as the sub- C^{*} algebra in $\mathcal{L}(\mathcal{H})$ generated by s_{1}, \ldots, s_{n}.

The construction of \mathcal{O}_{d} is independent of the Hilbert space \mathcal{H} and the choice of isometries s_{j} as long as the relations 1 are satisfied.
The algebra \mathcal{O}_{d} is a simple, unital C^{*}-algebra and has the following universal property: If A is a unital C^{*}-algebra containing elements a_{1}, \ldots, a_{d} such that

$$
a_{j}^{*} a_{j}=1 \quad \text { and } \quad \sum_{j=1}^{d} a_{j} a_{j}^{*}=1,
$$

then there is a unique $*$-homomorphism $\varphi: \mathcal{O}_{d} \rightarrow A$ such that $\varphi\left(s_{j}\right)=a_{j}$.
Definition 1.2. For $d \in \mathbb{Z}_{\geq 2}$, look at the generating isometries $s_{1}, \ldots, s_{d+1} \in \mathcal{O}_{d+1}$ and let \mathcal{E}_{d} be the sub-C ${ }^{*}$ algebra in $\mathcal{L}(\mathcal{H})$ generated by s_{1}, \ldots, s_{d}. That is, \mathcal{E}_{d} is the universal unital C^{*}-algebra generated by d isometries, whose orthogonal ranges do not add up to 1 .

The Cuntz algebra \mathcal{O}_{d} has elements satisfying the relations of \mathcal{E}_{d}, so by universality there is a surjective map $\mathcal{E}_{d} \rightarrow \mathcal{O}_{s}$. The kernel of this map is the ideal in \mathcal{E}_{d} generated by $s_{d+1} s_{d+1}^{*}=1-\sum^{d} s_{j} s_{j}^{*}$, which we denote by \mathcal{J}_{d}. Then $\mathcal{E}_{d} / \mathcal{J}_{d} \cong \mathcal{O}_{d}$.

2 A brief review of Hilbert Modules

Definition 2.1. Let A be a C^{*}-algebra and E a complex vector space which is also a right A-module. An A-valued right inner product on E is a map

$$
\begin{array}{ccc}
E \times E & \rightarrow & A \\
(\xi, \eta) & \mapsto & \langle\xi, \eta\rangle_{A}
\end{array}
$$

such that for any $\xi, \eta, \eta_{1}, \eta_{2} \in E, a \in A$ and $\alpha \in \mathbb{C}$ we have

1. $\left\langle\xi, \eta_{1}+\alpha \eta_{2}\right\rangle_{A}=\left\langle\xi, \eta_{1}\right\rangle_{A}+\alpha\left\langle\xi, \eta_{2}\right\rangle_{A}$.
2. $\langle\xi, \eta a\rangle_{A}=\langle\xi, \eta\rangle_{A} a$.
3. $\langle\xi, \eta\rangle_{A}^{*}=\langle\eta, \xi\rangle_{A}$.
4. $\langle\xi, \xi\rangle_{A} \geq 0$ in A.
5. $\langle\xi, \xi\rangle_{A}=0 \Longrightarrow \xi=0$.

Definition 2.2. Let A be a C^{*}-algebra. A Hilbert A-module is a complex vector space E which is a right A-module with an A-valued right inner product and so that E is complete with the norm $\|\xi\|:=\left\|\langle\xi, \xi\rangle_{A}\right\|^{1 / 2}$. We say that E is full if the two sided ideal $\operatorname{span}\langle E, E\rangle_{A}:=\operatorname{span}\left\{\langle\xi, \eta\rangle_{A}: \xi, \eta \in E\right\}$ is dense in A.

Example 2.3. Let \mathcal{H} be a Hilbert space with the physicists convention that the inner product is linear in the second variable. Then, \mathcal{H} is clearly a full Hilbert \mathbb{C}-module.

Example 2.4. Any C^{*}-algebra A is clearly a full Hilbert A-module with inner product given by $(a, b) \mapsto a^{*} b$. More generally, A^{n} is also a full Hilbert A-module with the obvious "euclidean" inner product.
Example 2.5. The set of continuous sections of a vector bundle over a compact Hausdorff space X equipped with a Riemannian metric g is a Hilbert $C(X)$-module.

Example 2.6. If $\left(E_{\lambda}\right)_{\lambda \in \Lambda}$ is an arbitrary family of Hilbert A-modules, we can form their direct sum

$$
\bigoplus_{\lambda \in \Lambda} E_{\lambda}:=\left\{\xi=\left(\xi_{\lambda}\right)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} E_{\lambda}: \sum_{\lambda \in \Lambda}\left\langle\xi_{\lambda}, \xi_{\lambda}\right\rangle \text { converges in } A\right\}
$$

which is a right A-module with coordinate-wise action and it becomes a Hilbert A-module when equipped with the well defined A-valued inner product

$$
\langle\xi, \eta\rangle:=\sum_{\lambda \in \Lambda}\left\langle\xi_{\lambda}, \eta_{\lambda}\right\rangle
$$

A main difference between Hilbert modules and Hilbert spaces is that not every bounded linear map between Hilbert A-modules has an adjoint. We will only be interested in those maps that do have an adjoint.

Definition 2.7. Let E and F be a Hilbert A-modules. A map $t: E \rightarrow F$ is said to be adjointable if there is a map $t^{*}: F \rightarrow E$ such that for any $\xi \in E$, and $\eta \in F$

$$
\langle t(\xi), \eta\rangle=\left\langle\xi, t^{*}(\eta)\right\rangle
$$

The space of adjointable maps from E to F is denoted by $\mathcal{L}_{A}(E, F)$ and $\mathcal{L}_{A}(E):=\mathcal{L}_{A}(E, E)$.
It's almost immediate that adjointable maps between Hilbert modules are linear and bounded. A standard proof shows that $\mathcal{L}_{A}(E)$ is a C^{*}-algebra when equipped with the operator norm. We will have special interest for a particular case of andjointable maps, those of "rank 1":

Definition 2.8. Let E and F be a Hilbert A-modules. For $\xi \in E$ and $\eta \in F$, we define a map $\theta_{\xi, \eta}: F \rightarrow E$ by

$$
\theta_{\xi, \eta}(\zeta):=\xi\langle\eta, \zeta\rangle_{A}
$$

One easily checks that $\theta_{\xi, \eta} \in \mathcal{L}_{A}(E, F)$, that $\left(\theta_{\xi, \eta}\right)^{*}=\theta_{\eta, \xi} \in \mathcal{L}_{A}(F, E)$ and that $\left\|\theta_{\xi, \eta}\right\| \leq\|\xi\|\|\eta\|$. This gives an analogous of the class of rank-one operators on Hilbert spaces. So, we define an analogous of the compact operators by letting

$$
\mathcal{K}_{A}(E, F):=\overline{\operatorname{span}\left\{\theta_{\xi, \eta}: \xi \in E, \eta \in F\right\}}
$$

It's also not hard to verify that $\mathcal{K}_{A}(E):=\mathcal{K}_{A}(E, E)$ is a closed two sided ideal in $\mathcal{L}_{A}(E)$, whence $\mathcal{K}(E)$ is also a C^{*}-algebra.

3 The Fock space construction

Definition 3.1. Let A be a C^{*}-algebra. A C C^{*}-correspondence over A is a pair (E, φ) where E is a Hilbert right A-module and a $\varphi: A \rightarrow \mathcal{L}_{A}(E)$ is a $*$-homomorphism.

Remark 3.2. Even though it's not strictly necessary, from now on we will assume that the map φ of a C^{*}-correspondence over A is injective and therefore isometric. This is done for simplicity.

Given $\left(E, \varphi_{E}\right)$ and $\left(F, \varphi_{F}\right)$ two C^{*}-correspondence over A, we use the inner tensor product construction to produce $\left(E \otimes_{\varphi_{F}} F, \widetilde{\varphi_{E}}\right)$, a new C^{*}-correspondence over A. More precisely, $E \otimes_{\varphi_{F}} F$ is a Hilbert module such that the middle action is glued:

$$
\xi a \otimes \eta-\xi \otimes \varphi_{F}(a) \eta=0,
$$

it's an A-module with right action satisfying

$$
(\xi \otimes \eta) a=\xi \otimes(\eta a),
$$

it has an A-valued right inner product such that

$$
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{1} \otimes \eta_{2}\right\rangle=\left\langle\eta_{1}, \varphi_{F}\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) \eta_{2}\right\rangle .
$$

In fact, $E \otimes_{\varphi_{F}} F$ is the completion of the algebraic tensor product $E \odot_{A} F$ with respect to the norm induced by the above inner product. Finally, $\widetilde{\varphi_{E}}: A \rightarrow \mathcal{L}_{A}\left(E \otimes_{\varphi_{F}} F\right)$ is defined on elementary tensors by

$$
\widetilde{\varphi_{E}}(a)(\xi \otimes \eta)=\left(\varphi_{E}(a)(\xi)\right) \otimes \eta
$$

From now on we'll do an abuse of notation and drop the ${ }^{\sim}$ on top of φ_{F}. In fact, any adjointable map acting on a Hilbert A module, also acts on $E \otimes-$ by only acting on the E portion.

Definition 3.3. Given (E, φ) a C^{*}-correspondence over A, the Fock space of E is the Hilbert A-module given by

$$
\mathcal{F}(E):=\bigoplus_{n \geq 0} E^{\otimes n}
$$

where $E^{\otimes 0}:=A$ and $E^{\otimes n}:=\underbrace{E \otimes_{\varphi} \ldots \otimes_{\varphi} E}_{n \text { times }}$.
An arbitrary element of $\mathcal{F}(E)$ is a tuple $\left(\kappa_{n}\right)_{n \geq 0}$ where each κ_{n} is an element of the nth degree tensor product of E.
For a fixed $\xi \in E$ and any $n \in \mathbb{Z}_{\geq 1}$ we have a creation operator $c_{\xi}: E^{\otimes n} \rightarrow E^{\otimes(n+1)}$ given by

$$
c_{\xi}(\eta):=\xi \otimes \eta, \quad \forall \eta \in E^{\otimes n}
$$

If $n=0$ we set $c_{\xi}: A \rightarrow E$

$$
c_{\xi}(a):=\xi a, \quad \forall \in A
$$

Each c_{ξ} is an adjointable map where, if $n \in \mathbb{Z}_{\geq 1}, c_{\xi}^{*}: E^{\otimes(n+1)} \rightarrow: E^{\otimes n}$ is an annihilation operator, satisfying

$$
c_{\xi}^{*}(\zeta \otimes \eta)=\varphi(\langle\xi, \zeta\rangle) \eta, \quad \forall \zeta \in E, \eta \in E^{\otimes n}
$$

and $c_{\xi}^{*}: E \rightarrow A$ is simply

$$
c_{\xi}^{*}(\zeta)=\langle\xi, \zeta\rangle, \quad \forall \zeta \in E,
$$

Notice that c_{ξ} increases the degree by one, whereas c_{ξ}^{*} decreases the degree by one. Moreover, let $\xi, \zeta \in E$ and $n \geq 0$. We have the following important property for the map $c_{\xi}^{*} c_{\zeta}: E^{\otimes n} \rightarrow E^{\otimes n}$:

$$
c_{\xi}^{*} c_{\zeta}=\varphi(\langle\xi, \zeta\rangle) \in \mathcal{L}_{A}\left(E^{\otimes n}\right),
$$

and that also for the map $c_{\xi} c_{\zeta}^{*}: E^{\otimes(n+1)} \rightarrow E^{\otimes(n+1)}$, which satisfies

$$
c_{\xi} c_{\zeta}^{*}=\theta_{\xi, \zeta} \in \mathcal{L}_{A}\left(E^{\otimes(n+1)}\right) .
$$

We abuse notation and consider the elements c_{ξ} as elements of $\mathcal{L}_{A}(\mathcal{F}(E))$ acting coordinate-wise:

$$
c_{\xi}\left(\left(\kappa_{n}\right)_{n \geq 0}\right):=\left(c_{\xi}\left(\kappa_{n}\right)\right)_{n \geq 0}
$$

and

$$
c_{\xi}^{*}\left(\left(\kappa_{n}\right)_{n \geq 0}\right):=\left(c_{\xi}^{*}\left(\kappa_{n}\right)\right)_{n \geq 1}
$$

4 The Toeplitz algebra \mathcal{T}_{E} and $\mathcal{T}_{\mathbb{C}^{d}} \cong \mathcal{E}_{d}$

Definition 4.1. Let (E, φ) be a C^{*}-correspondence over A. We define \mathcal{T}_{E}, the Toeplitz algebra of E, as the C^{*}-subalgebra in $\mathcal{L}_{A}(\mathcal{F}(E))$ generated by the creation operators $\left\{c_{\xi}: \xi \in E\right\}$.

Remark 4.2. Notice that the definition of \mathcal{T}_{E} does not change if instead of A we use $\overline{\operatorname{span}}\langle E, E\rangle \subseteq A$. Thus, we might as well assume that E is a full Hilbert A-module. We then can identify A with it's image in \mathcal{T}_{E} given by $a \mapsto \varphi(a)$. Indeed, it suffices to check that $\varphi(a) \in \mathcal{T}_{E}$ for any $a \in A$. By the fullness assumpltion, it suffices to check it when $a=\langle\xi, \zeta\rangle$, but we already know that $\varphi(\langle\xi, \zeta\rangle) \in c_{\xi}^{*} c_{\zeta} \in \mathcal{T}_{E}$.

The Toeplitz algebra \mathcal{T}_{E} has the following universal property. Suppose B is another C^{*}-algebra and that there is a $*$-homomoprhism $\pi: A \rightarrow B$, a linear map $t: E \rightarrow B$ such that

1. $t(\xi)^{*} t(\zeta)=\pi(\langle\xi, \zeta\rangle)$ for $\xi, \zeta \in E$,
2. $\pi(a) t(\xi)=t(\varphi(a) \xi)$

Then there π has is a unique extension $\widehat{\pi}: \mathcal{T}_{E} \rightarrow B$ that sends c_{ξ} to $t(\xi)$.
Theorem 4.3. Let $d \in \mathbb{Z} \geq 2$ and regard \mathbb{C}^{d} as a Hilbert \mathbb{C}-module. Let $\varphi: \mathbb{C} \rightarrow \mathcal{L}_{\mathbb{C}}\left(\mathbb{C}^{d}\right)$ by given by

$$
\varphi(z)\left(\zeta_{1}, \ldots, \zeta_{d}\right):=\left(z \zeta_{1}, \ldots, z \zeta_{d}\right)
$$

Then $\left(\mathbb{C}^{d}, \varphi\right)$ is a C^{*} correspondence and $\mathcal{T}_{\mathbb{C}^{d}} \cong \mathcal{E}_{d}$.
Proof. For simplicity we only show this when $d=2$ as the proof is essentially the same for any other d. We start by showing that the $\mathcal{T}_{\mathbb{C}^{2}}$ has elements satisfying the relations of \mathcal{E}_{2}. Indeed, consider $v_{1}:=c_{(1,0)}$ and $v_{2}:=c_{(0,1)}$. We have to check that $v_{1}^{*} v_{1}=v_{2}^{*} v_{2}=1$ in $\mathcal{L}_{\mathbb{C}}\left(\mathcal{F}\left(\mathbb{C}^{2}\right)\right)$. We only do $v_{1}^{*} v_{1}=1$, the other one being analogous. We have to check $v_{1}^{*} v_{1}$ acts as the identity on each $\left(\mathbb{C}^{2}\right)^{\otimes n}$. Well, for $n=0$ take $z \in \mathbb{C}$

$$
\left(v_{1}^{*} v_{1}\right)(z)=c_{(1,0)}^{*}(z, 0)=\langle(1,0),(z, 0)\rangle=z .
$$

For $n \geq 1$,

$$
\left(v_{1}^{*} v_{1}\right)=c_{(1,0)}^{*} c_{(1,0)}=\varphi(\langle(1,0),(1,0)\rangle)=\varphi(1)=\mathrm{id}
$$

By universality there is a unique $*$-homomorphism $\psi: \mathcal{E}_{2} \rightarrow \mathcal{T}_{\mathbb{C}^{2}}$, which sends the s_{j} to v_{j}. Notice that ψ is surjective because v_{1}, v_{2} generate $\mathcal{T}_{\mathbb{C}^{2}}$. To show that it's injective, we use the universal property of $\mathcal{T}_{\mathbb{C}^{2}}$ we produce a map $\mathcal{T}_{\mathbb{C}^{2}} \rightarrow \mathcal{E}_{2}$ which is a left inverse to ψ. Let $\pi: \mathbb{C} \rightarrow \mathcal{E}_{2}$ be given by $\pi(z):=z 1$ and $t: \mathbb{C}^{2} \rightarrow \mathcal{E}_{2}$ be given by

$$
t\left(\zeta_{1}, \zeta_{2}\right)=\zeta_{1} s_{1}+\zeta_{2} s_{2}
$$

It's obvious that π is a $*$-homomorphism and that t is a linear map. Moreover, using that $s_{j}^{*} s_{j}=1$ we get

$$
t\left(\zeta_{1}, \zeta_{2}\right)^{*} t\left(\eta_{1}, \eta_{2}\right)=\left(\overline{\zeta_{1}} \eta_{1}+\overline{\zeta_{2}} \eta_{2}\right) 1=\pi\left(\left\langle\left(\zeta_{1}, \zeta_{2}\right),\left(\eta_{1}, \eta_{2}\right)\right\rangle\right)
$$

Finally,

$$
\pi(z) t\left(\zeta_{1}, \zeta_{2}\right)=z 1\left(\zeta_{1} s_{1}+\zeta_{2} s_{2}\right)=z \zeta_{1} s_{1}+z \zeta_{2} s_{2}=t\left(\varphi(z)\left(\zeta_{1}, \zeta_{2}\right)\right)
$$

Hence, universality gives the $*$-homomorphism $\widehat{\pi}: \mathcal{T}_{\mathbb{C}^{2}} \rightarrow \mathcal{E}_{2}$ sending c_{ξ} to $t(\xi)$. Since $t(1,0)=s_{1}$ and $t(0,1)=s_{2}$, it follows $\widehat{\pi}$ is indeed a left inverse for ψ.

Remark 4.4. Notice that $\mathcal{T}_{\mathbb{C}^{2}} \neq \mathcal{O}_{2}$. Indeed, if $v_{1}:=c_{(1,0)}$ and $v_{2}:=c_{(0,1)}$ are asin the proof, then $v_{1} v_{1}^{*}+v_{2} v_{2}^{*}$ does not quite act as the identity on all degrees of $\mathcal{F}\left(\mathbb{C}^{2}\right)$. In fact, it only fails to do so at degree 0 , because the adjoint kills everything at $n=0$. Indeed,

$$
\left(v_{1} v_{1}^{*}+v_{2} v_{2}^{*}\right)\left(\left(\kappa_{n}\right)_{n \geq 0}\right)=\left(\left(\kappa_{n}\right)_{n \geq 1}\right)
$$

Thus, $1-\left(v_{1} v_{1}^{*}+v_{2} v_{2}^{*}\right)$ is in fact a rank one operator who extracts the 0 coefficient, that is

$$
1-\left(v_{1} v_{1}^{*}+v_{2} v_{2}^{*}\right)=\theta_{(1,0,0, \ldots),(1,0,0, \ldots)}
$$

This problem will no longer occur when we define the Cuntz-Pimsner algebra $\mathcal{O}_{\mathbb{C}^{2}}$, as we will be taking a quotient by a set that contains $1-\left(v_{1} v_{1}^{*}+v_{2} v_{2}^{*}\right)$.

A more general version of Theorem 4.3 above, with essentially the same proof, is the following
Theorem 4.5. Let $d \in \mathbb{Z}_{\geq 2}, A$ a C^{*}-algebra and regard A^{d} as a Hilbert A-module. Let $\varphi: A \rightarrow \mathcal{L}_{A}\left(A^{d}\right)$ by given by

$$
\varphi(a)\left(a_{1}, \ldots, a_{d}\right):=\left(a a_{1}, \ldots, a a_{d}\right)
$$

Then $\left(A^{d}, \varphi\right)$ is a C^{*} correspondence and $\mathcal{T}_{A^{d}} \cong A \otimes \mathcal{E}_{d}$.

5 The Cuntz-Pimsner algebra \mathcal{O}_{E} and $\mathcal{O}_{\mathbb{C}^{d}} \cong \mathcal{O}_{d}$

Definition 5.1. For a C^{*} correspondence (E, φ) over A, we define the ideal $J_{E}:=\varphi^{-1}\left(\mathcal{K}_{A}(E)\right)$.
Lemma 5.2. Let (E, φ) be a C^{*} correspondence over A. Then $\mathcal{F}(E) J_{E}$ is a Hilbert J_{E}-module and

$$
\mathcal{K}_{J_{E}}\left(\mathcal{F}(E) J_{E}\right)=\overline{\operatorname{span}}\left\{\theta_{\kappa a, \tau}: \kappa, \tau \in \mathcal{F}(E), a \in J_{E}\right\} \unlhd \mathcal{L}_{A}(\mathcal{F}(E))
$$

We will now consider the quotient C^{*}-algebra $\mathcal{Q}_{A}(E):=\mathcal{L}_{A}(\mathcal{F}(E)) / \mathcal{K}_{J_{E}}\left(\mathcal{F}(E) J_{E}\right)$ together with the quotient $\operatorname{map} q: \mathcal{L}_{A}(\mathcal{F}(E)) \rightarrow \mathcal{Q}_{A}(E)$.

Definition 5.3. Let (E, φ) be a C^{*}-correspondence over A. We define \mathcal{O}_{E}, the Cuntz-Pimsner algebra of E, as the C^{*}-subalgebra in $\mathcal{Q}_{A}(E)$ generated by the image of the creation operators $\left\{q\left(c_{\xi}\right): \xi \in E\right\}$.

Remark 5.4. Just as before, we assume that E is a full Hilbert A-module and identify A as a subset of \mathcal{O}_{E} via $a \mapsto q(\varphi(a))$.

The Cuntz-Pimsner algebra \mathcal{O}_{E} has the following universal property. Suppose B is another C^{*}-algebra and that there is a $*$-homomoprhism $\pi: A \rightarrow B$, a linear map $t: E \rightarrow B$ such that

1. $t(\xi)^{*} t(\zeta)=\pi(\langle\xi, \zeta\rangle)$ for $\xi, \zeta \in E$,
2. $\pi(a) t(\xi)=t(\varphi(a) \xi)$

Further, consider the $*$-homomorphism $\Theta_{t}: \mathcal{K}_{A}(E) \rightarrow B$ satisfying $\Theta_{t}\left(\theta_{\xi, \zeta}\right)=t(\xi) t(\zeta)^{*}$ for $\xi, \zeta \in E$, and suppose also that
3. $\pi(a)=\Theta_{t}(\varphi(a))$ for $a \in J_{E}$

Then there π has is a unique extension $\widehat{\pi}: \mathcal{O}_{E} \rightarrow B$ that sends $q\left(c_{\xi}\right)$ to $t(\xi)$.
Theorem 5.5. Let $d \in \mathbb{Z}_{\geq 2}$ and regard \mathbb{C}^{d} as a Hilbert \mathbb{C}-module. Let $\varphi: \mathbb{C} \rightarrow \mathcal{L}_{\mathbb{C}}\left(\mathbb{C}^{d}\right)$ by given by

$$
\varphi(z)\left(\zeta_{1}, \ldots, \zeta_{d}\right):=\left(z \zeta_{1}, \ldots, z \zeta_{d}\right)
$$

Then $\left(\mathbb{C}^{d}, \varphi\right)$ is a C^{*} correspondence and $\mathcal{O}_{\mathbb{C}^{d}} \cong \mathcal{O}_{d}$.
Proof. Again we only show this when $d=2$. We will show that $\mathcal{O}_{\mathbb{C}^{2}}$ fits the universal property for \mathcal{O}_{2}. Well, if $v_{1}:=q\left(c_{(1,0)}\right)$ and $v_{2}:=q\left(c_{(0,1)}\right)$. Using our computations from Theorem 4.3 we have

$$
v_{1}^{*} v_{1}=v_{2}^{*} v_{2}=q\left(\operatorname{id}_{\mathcal{L}_{A}\left(\mathcal{F}\left(\mathbb{C}^{2}\right)\right)}\right)=1
$$

Also, notice that $\theta_{(1,0,0, \ldots),(1,0,0, \ldots)} \in \mathcal{K}_{J_{E}}\left(\mathcal{F}(E) J_{E}\right)$ because in this case $\mathcal{L}_{C}\left(\mathbb{C}^{2}\right)=\mathcal{K}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$ and therefore $J_{\mathbb{C}^{2}}=\mathbb{C}$. Thus, following the computations from Remark 4.4 we have

$$
v_{1} v_{1}^{*}+v_{2} v_{2}^{*}=q\left(\mathrm{id}-\theta_{(1,0,0, \ldots),(1,0,0, \ldots)}\right)=q(\mathrm{id})=1
$$

Hence, universality gives a surjective $*$-homomorphism $\mathcal{O}_{2} \rightarrow \mathcal{O}_{\mathbb{C}^{2}}$ sending s_{j} to v_{j}, for $j=1,2$. Since \mathcal{O}_{2} is simple,such homomorphism has to be injective and we are done.
A more general version of Theorem 5.5 above, with essentially the same proof, is the following
Theorem 5.6. Let $d \in \mathbb{Z}_{\geq 2}, A$ a C^{*}-algebra and regard A^{d} as a Hilbert A-module. Let $\varphi: A \rightarrow \mathcal{L}_{A}\left(A^{d}\right)$ by given by

$$
\varphi(a)\left(a_{1}, \ldots, a_{d}\right):=\left(a a_{1}, \ldots, a a_{d}\right)
$$

Then $\left(A^{d}, \varphi\right)$ is a C^{*} correspondence and $\mathcal{O}_{A^{d}} \cong A \otimes \mathcal{O}_{d}$.

6 A potential L^{p} version

If (X, μ) is a measure space and $p \in[1, \infty)$, an L^{p}-operator algebra A is a Banach algebra that's isometrically isomorphic to a norm closed subalgebra of $\mathcal{L}\left(L^{p}(X, \mu)\right)$.

Definition 6.1. Let $d \geq 2$ be an integer. We define the Leavitt algebra L_{d} to be the universal complex unital algebra generated by elements $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$ satisfying

$$
t_{j} s_{k}=\delta_{j, k} \quad \text { and } \quad \sum_{j=1}^{d} s_{j} t_{j}=1
$$

There is a well defined norm on L_{d} that comes from a particular kind of algebraic representations of L_{d} on σ-finite L^{p} spaces. The completion of L_{d} with respect to this norm is the L^{p}-Cuntz algebra \mathcal{O}_{d}^{p}.
I have been working on a Fock space-type construction for an L^{p} operator algebra A that yields a class of L^{p}-operator algebras that contains the L^{p}-Cuntz algebras. Looks like looking at the notion of Rigged Hilbert modules introduced by D.P. Blecher gives a reasonable starting point. One needs to give an operator space type definition for L^{p} spaces. Some issues that might appear along the road will require to fix a representation $\pi: A \rightarrow \mathcal{L}\left(L^{p}(X, \mu)\right)$, choose a particular tensor product and a particular type of completion.

Department of Mathematics, University of Oregon, Eugene OR 97403-1222, USA.
E-mail address: alonsodQuoregon.edu

